
® ASwanGroupCompany

Diaphragm Tank Sizing Guide

HTX and SXHT Series
Hydronic Expansion Tanks

PH and WHV Series
Thermal Expansion Tanks

Wellrite, Challenger, Flexlite Series
 Water Well Storage Tanks

1-800-527-0030
www.flexconind.com

CONTENTS

Boyle's Law	2
HTX \& SXHT Sizing	3
PH \& WHV Sizing	4
Well Tank Sizing	5
Acceptance \& Expansion Factors	6
Typical Installations	7
Quick Sizing Charts	8

Boyle's Law

All diaphragm tank sizing begins with a basic law of physics known as Boyle's Law. When applied to Hydronic and Thermal expansion tanks it will determine the acceptance factor of the tank. When applied to Water well storage tanks it will determine the drawdown factor. Boyle's Law is expressed as an equation where;
(P_{a} divided by P_{f}) - $\left(\mathrm{P}_{\mathrm{a}}\right.$ divided by $\left.\mathrm{P}_{\mathrm{o}}\right)=$ Acceptance or drawdown factor

Boyle's Law as applied to hydronic and thermal expansion tanks;

when: $P_{a}=$ pressure in tank before system is filled (plus 14.7 PSI atmospheric pressure)
$P_{f}=$ minimum operating or fill pressure (plus 14.7 PSI atmospheric pressure)
$\mathrm{P}_{\mathrm{O}}=$ maximum operating pressure (plus 14.7 PSI atmospheric pressure)
For pre-pressurized diaphragm type expansion tanks, P_{a} is equal to P_{f} so the formula becomes;
1 minus (P_{f} divided by P_{o}) = Acceptance Factor

Boyle's Law as applied to water well storage tanks;

What is called the acceptance factor in hygronic applications, is called the drawdown factor in water well applications.
when: $P_{a}=$ pressure in tank before system is filled (plus 14.7 PSI atmospheric pressure)
$\mathrm{P}_{\mathrm{f}}=$ pump cut-in pressure (plus 14.7 PSI atmospheric pressure)
$\mathrm{P}_{\mathrm{O}}=$ pump cut-out pressure (plus 14.7 PSI atmospheric pressure)
With all the pre-pressurized diaphragm tanks, Pa is equal to Pf , so the formula is;
1 minus (P_{f} divided by P_{o}) = Drawdown Factor

HTX \& SXHT Sizing

for
Hydronic Heating Systems

Use these tanks when installing a closed loop heating system

Information required:

1. Total system water content \qquad gallons
2. Initial fill water temperature

3. Maximum water temperature \qquad
4. System fill pressure
5. Maximum pressure (10% below relief valve) \qquad psig
psig
Tank Selection:
6. Enter total system water content (form line 1) \qquad gallons
7. Enter expansion factor from Table 1 \qquad gallons
8. Expanded water volume (line $6 \times$ line 7) \qquad
9. Acceptance factor from Table 2
10. Total tank volume required (divide line 8 by line 9)

Line 8 \qquad gallons acceptance volume
Line 10 \qquad gallons total tank volume

Select Flexcon tank below which satisfies both line 8 and line 10. For larger systems, multiple tanks may be manifolded together to meet system requirements. For systems containing propylene glycol please contact customer service.

HTX SERIES

SXHT
SERIES

HTX and SXHT Series					
Model	Total Volume (gallons)	Maximum Acceptance (gallons)	Diameter (inches)	Length (inches)	Weight (lbs)
	2.1	1.0	8	12.5	5.5
HTX 15	2.1	2.5	11	14.0	10.0
HTX 30	4.5	3.0	11.4	17.2	11.5
HTX 60	6	6	16	20.8	28.0
HTX 90	15	6	16	21.7	32.0
SXHT 30	15	8	16	28.8	39.0
SXHT 40	20	13.4	16	42.8	57.0
SXHT 60	33	17.7	21	36.2	72.0
SXHT 90	44	25	21	47.9	112.0
SXHT 110	62	32.6	21	62.0	123.0
SXHT 160	81				

PH \& WHV Sizing

for
Domestic Water Heating Systems

Use these tanks with water heaters or radiant heating systems (with

 non barrier tubing)
Information required:

1. Total system water content or \qquad gallons water heater x 1.1
2. Initial fill water temperature \qquad
3. Maximum water temperature \qquad
4. System fill pressure \qquad
5. Maximum pressure (10% below relief valve) \qquad
psig
psig

Tank Selection:

列

6. Enter total system water content (form line 1) \qquad gallons
7. Enter expansion factor from Table 1
8. Expanded water volume (line $6 \times$ line 7)
\square gallons
9. Acceptance factor from Table 2
10. Total tank volume required (divide line 8 by line 9)

Line 8 \qquad gallons acceptance volume Line 10 \qquad gallons total tank volume

Select Flexcon tank below which satisfies both line 8 and line 10. For larger systems, multiple tanks may be manifolded together to meet system requirements. For systems containing propylene glycol please contact customer service.

WHV
SERIES

Model								Total Volume (gallons)	Maximum Acceptance (gallons)	Diameter (inches)	Length (inches)	Weight (lbs)
	2.1	1.0	8.5	11.5	7.0							
PH 5	4.5	2.0	10.0	15.0	10.0							
PH 12	6.0	3.8	12.5	19.2	11.5							
PH 25	15.0	6.3	16.0	21.7	32							
WHV 50	20.0	9.0	16.0	28.8	39							
WHV 75	33.0	14.4	16.0	27.8	60							
WHV 120	44.0	19.8	21.0	36.2	72							
WHV 165	85.0	38.3	21.0	44.4	140							

Well Tank Sizing

Use these tanks with domestic water well systems

Information required:

1. Pump capacity in gallons per minute (GPM)
\qquad gallons
or storage volume required
2. Pump cut-in pressure
\qquad psig
3. Pump cut-out pressure
\qquad psig

Tank Selection:
5. Enter drawdown factor from table 3
6. Divide storage volume (line1) by the drawdown factor (line5)
\qquad gallons

Select the well tank that satisfies the total volume determined in Line 6. Or, use the simple table below.

Flexcon Models			Tank Volume (gallons)	Drawdown			Dimensions			Shipping Weight (lbs)
WR (steel)	$\begin{gathered} \text { PC } \\ \text { (steel) } \end{gathered}$	$\begin{gathered} \text { FL } \\ \text { (composite) } \end{gathered}$		$\begin{gathered} \hline \text { @ 20/40 } \\ \text { psig } \\ \text { (gallons) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { @30/50 } \\ \text { psig } \\ \text { (gallons) } \\ \hline \end{gathered}$	$\begin{gathered} \hline @ 40 / 60 \\ \text { psig } \\ \text { (gallons) } \\ \hline \end{gathered}$	Diameter (inches)	Height (inches)	System Connection	
WR45	PC44		14	5.6	4.6	4.1	16	22.0	$1 "$	28.0
		FL 5	15	6.0	5.1	4.4	16.5	25.6	1"	19.0
WR60	PC66		20	8.1	6.8	5.9	16	29.0	1 "	36.0
		FL 7	22	8.8	7.5	6.5	16.5	34.1	1 "	24.0
WR80	PC88		26	10.5	8.9	7.7	16	34.5	$1 "$	41.0
WR100	PC111		32	12.9	10.9	9.4	21	27.8	$11 / 4$ "	54.0
WR120	PC122		34	13.3	11.3	9.7	16	42.8	1 "	49.0
		FL12	35	14.1	11.9	10.3	16.5	48.9	$1 "$	33.5
WR140	PC144		44	17.7	15.0	13.0	21	36.3	$11 / 4 "$	67.0
		FL17	50	20.1	17.0	14.7	21.4	43.3	$11 / 4 "$	47.0
WR200	PC211		62	25.0	21.1	18.3	21	48.0	$11 / 4 "$	82.0
		FL22	65	26.1	22.1	19.1	21.4	51.3	$11 / 4 "$	58.0
		FL28	82	32.6	27.6	23.9	21.4	64.7	11/4"	69.5
WR240	PC244		82	32.6	27.6	23.9	21	62.0	$11 / 4 "$	99.0
WR260	PC266		85	34.3	29.0	25.1	26	44.5	11/4"	121.0
		FL30	90	36.2	30.6	26.5	24.2	57.0	$11 / 4 "$	77.0
		FL40	119	48.0	40.6	35.1	24.2	72.1	$11 / 4 "$	99.5
WR360	PC366		119	48.0	40.6	35.1	26	59.75	11/4"	153.0

Acceptance and Expansion

Factors

Table 1 Expansion Factors			
Final Temp, F	Initial Temperature F		
	40	50	60
100	. 00575	. 00569	. 00520
110	. 00771	. 00765	. 00716
120	. 01004	. 00998	. 00949
130	. 01236	. 01230	. 01181
140	. 01501	. 01495	. 01446
150	. 01787	. 01779	. 01730
160	. 02092	. 02086	. 02037
170	. 02418	. 02412	. 02363
180	. 02763	. 02757	. 02708
190	. 03127	. 03121	. 03072
200	. 03510	. 03504	. 03455
210	. 03911	. 03905	. 03856

Table 2 Acceptance Factors Hydronic and Thermal Tanks									
P_{0} Maximum	P_{f} - Minimum Operating Pressure at tank (PSIG)								
(PSIG)	12	20	25	40	50	60	70	80	90
27	. 360	. 168							
30	. 403	. 224	. 112						
50	. 587	. 464	. 386	. 155					
70	. 685	. 590	. 531	. 354	. 236	. 118			
90	. 745	. 669	. 621	. 478	. 382	. 287	. 191	. 096	
110	. 786	. 723	. 682	. 561	. 481	. 401	. 321	. 241	. 160
130	. 815	. 760	. 726	. 622	. 553	. 484	. 415	. 346	. 277
150	. 838	. 789	. 759	. 668	. 608	. 547	. 486	. 429	. 365

Plain Steel Tank Volumes		
Gallons	Diameter	Length
15	$14^{\prime \prime}$	$26^{\prime \prime}$
30	$14^{\prime \prime}$	$49^{\prime \prime}$
40	$14^{\prime \prime}$	$65^{\prime \prime}$
60	$16^{\prime \prime}$	$74^{\prime \prime}$
80	$20^{\prime \prime}$	$64^{\prime \prime}$
100	$20^{\prime \prime}$	$79^{\prime \prime}$
120	$24^{\prime \prime}$	$67^{\prime \prime}$
135	$24^{\prime \prime}$	$75^{\prime \prime}$

Table 3 Drawdown Factors Water Well Storage Tanks				
Cut-out or Final Tank Pressure (PSIG)	Cut-in or Initial Tank Pressure (PSIG)			

Volume of water in gallons per Lineal Foot											
Type	$1 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	$11 / 4^{\prime \prime}$	$11 / 2^{\prime \prime}$	$2^{\prime \prime}$	$21 / 2^{\prime \prime}$	$3 \prime$	4	5	6
Steel Pipe	.016	.028	.045	.078	.105	.172	.250	.385	.667	1.00	1.50
Copper Pipe	.012	.025	.043	.065	.092	.161	.250	.357	.625	1.00	1.40

Typical Installations

Hydronic Systems

Water Heater Systems

Water Well Storage Systems

