

A Swan Group Company

Diaphragm Tank Sizing Guide

HTX and SXHT Series Hydronic Expansion Tanks

PH and WHV Series Thermal Expansion Tanks

Wellrite, Challenger, Flexlite Series Water Well Storage Tanks

> 1-800-527-0030 www.flexconind.com

CONTENTS							
Boyle's Law	2						
HTX & SXHT Sizing	3						
PH & WHV Sizing	4						
Well Tank Sizing	5						
Acceptance & Expansion Factors	6						
Typical Installations	7						
Quick Sizing Charts	8						

Boyle's Law

All diaphragm tank sizing begins with a basic law of physics known as Boyle's Law. When applied to Hydronic and Thermal expansion tanks it will determine the *acceptance* factor of the tank. When applied to Water well storage tanks it will determine the *drawdown* factor. Boyle's Law is expressed as an equation where; (P_a divided by P_f) - (P_a divided by P_o) = Acceptance or drawdown factor

Boyle's Law as applied to hydronic and thermal expansion tanks;

when: P_a = pressure in tank before system is filled (plus 14.7 PSI atmospheric pressure)

 P_f = minimum operating or fill pressure (plus 14.7 PSI atmospheric pressure)

P_O = maximum operating pressure (plus 14.7 PSI atmospheric pressure)

For pre-pressurized diaphragm type expansion tanks, P_a is equal to P_f so the formula becomes;

1 minus (P_f divided by P_0) = Acceptance Factor

Boyle's Law as applied to water well storage tanks;

What is called the *acceptance* factor in hygronic applications, is called the *drawdown* factor in water well applications.

when: P_a = pressure in tank before system is filled (plus 14.7 PSI atmospheric pressure)

P_f = pump cut-in pressure (plus 14.7 PSI atmospheric pressure)

 P_0 = pump cut-out pressure (plus 14.7 PSI atmospheric pressure)

With all the pre-pressurized diaphragm tanks, Pa is equal to Pf, so the formula is;

1 minus (P_f divided by P_o) = *Drawdown* Factor

HTX & SXHT Sizing

for

Hydronic Heating Systems

lse these tanks when installi			
Information required:			
1. Total system water content		gallons	
2. Initial fill water temperature		F	
3. Maximum water temperature		F	
4. System fill pressure		psig	FLEX ?
5. Maximum pressure (10% below	w relief valve)	psig	
Tank Selection:			
6. Enter total system water cont	ent (form line 1)	gallons	HTX
7. Enter expansion factor from T	able 1		SERIES
8. Expanded water volume (line	6 X line 7)	gallons	×
9. Acceptance factor from Table	2		
10. Total tank volume required			(200)
(divide line 8 by line 9)			FLEX 2
Line 8	gallons acceptar	nce volume	
Line 10	gallons total tan	k volume	

Select Flexcon tank below which satisfies both line 8 and line 10. For larger systems, multiple tanks may be manifolded together to meet system requirements. For systems containing propylene glycol please contact customer service.

SXHT SERIES

HTX and SXHT Series									
	Total	Maximum	Dimensions						
Model Volume Acceptance (gallons) (gallons)		Diameter (inches)	Length (inches)	Weight (Ibs)					
HTX 15	2.1	1.0	8	12.5	5.5				
HTX 30	4.5	2.5	11	14.0	10.0				
HTX 60	6	3.0	11.4	17.2	11.5				
HTX 90	15	6	16	20.8	28.0				
SXHT 30	15	6	16	21.7	32.0				
SXHT 40	20	8	16	28.8	39.0				
SXHT 60	33	13.4	16	42.8	57.0				
SXHT 90	44	17.7	21	36.2	72.0				
SXHT 110	62	25	21	47.9	112.0				
SXHT 160	81	32.6	21	62.0	123.0				

PH & WHV Sizing

for Domestic Water Heating Systems

Select Flexcon tank below which satisfies both line 8 and line 10. For larger systems, multiple tanks may be manifolded together to meet system requirements. For systems containing propylene glycol please contact customer service.

WHV SERIES

PH & WHV Series									
	Total	Maximum Acceptance (gallons)	Dimensions						
Model	Volume (gallons)		Diameter (inches)	Length (inches)	Weight (Ibs)				
PH 5	2.1	1.0	8.5	11.5	7.0				
PH 12	4.5	2.0	10.0	15.0	10.0				
PH 25	6.0	3.8	12.5	19.2	11.5				
WHV 50	15.0	6.3	16.0	21.7	32				
WHV 75	20.0	9.0	16.0	28.8	39				
WHV 120	33.0	14.4	16.0	27.8	60				
WHV 165	44.0	19.8	21.0	36.2	72				
WHV 320	85.0	38.3	21.0	44.4	140				

Use these tanks with domestic water well systems

Information required:

- 1. Pump capacity in gallons per minute (GPM)
- _____ gallons
 - or storage volume required
- 2. Pump cut-in pressure
 - _____ psig
- 3. Pump cut-out pressure _____ psig

Tank Selection:

- 5. Enter drawdown factor from table 3
- Divide storage volume (line1) by the drawdown factor (line5)
 _____gallons

Select the well tank that satisfies the total volume determined in Line 6. Or, use the simple table below.

F	lexcon Mod	els	Tank	Drawdown				Shipping		
WR (steel)	PC (steel)	FL (composite)	Volume (gallons)	@ 20/40 psig (gallons)	@30/50 psig (gallons)	@40/60 psig (gallons)	Diameter (inches)	Height (inches)	System Connection	Weight (lbs)
WR45	PC44		14	5.6	4.6	4.1	16	22.0	1″	28.0
		FL 5	15	6.0	5.1	4.4	16.5	25.6	1″	19.0
WR60	PC66		20	8.1	6.8	5.9	16	29.0	1″	36.0
		FL 7	22	8.8	7.5	6.5	16.5	34.1	1″	24.0
WR80	PC88		26	10.5	8.9	7.7	16	34.5	1″	41.0
WR100	PC111		32	12.9	10.9	9.4	21	27.8	1 1/4"	54.0
WR120	PC122		34	13.3	11.3	9.7	16	42.8	1″	49.0
		FL12	35	14.1	11.9	10.3	16.5	48.9	1″	33.5
WR140	PC144		44	17.7	15.0	13.0	21	36.3	1 1/4"	67.0
		FL17	50	20.1	17.0	14.7	21.4	43.3	1 1/4"	47.0
WR200	PC211		62	25.0	21.1	18.3	21	48.0	1 1/4"	82.0
		FL22	65	26.1	22.1	19.1	21.4	51.3	1 1/4"	58.0
		FL28	82	32.6	27.6	23.9	21.4	64.7	1 1/4"	69.5
WR240	PC244		82	32.6	27.6	23.9	21	62.0	1 1/4"	99.0
WR260	PC266		85	34.3	29.0	25.1	26	44.5	1 1/4"	121.0
		FL30	90	36.2	30.6	26.5	24.2	57.0	1 1/4"	77.0
		FL40	119	48.0	40.6	35.1	24.2	72.1	1 1/4"	99.5
WR360	PC366		119	48.0	40.6	35.1	26	59.75	1 1/4"	153.0

Acceptance and Expansion Factors

Table 1Expansion Factors									
Final Temp,	Initial Temperature F								
F	40	50	60						
100	.00575	.00569	.00520						
110	.00771	.00765	.00716						
120	.01004	.00998	.00949						
130	.01236	.01230	.01181						
140	.01501	.01495	.01446						
150	.01787	.01779	.01730						
160	.02092	.02086	.02037						
170	.02418	.02412	.02363						
180	.02763	.02757	.02708						
190	.03127	.03121	.03072						
200	.03510	.03504	.03455						
210	.03911	.03905	.03856						

Table 2 Acceptance Factors Hydronic and Thermal Tanks									
P _O Maximum Operating		^P f - Minimum Operating Pressure at tank (PSIG)							
Pressure (PSIG)	12	20	25	40	50	60	70	80	90
27	.360	.168							
30	.403	.224	.112						
50	.587	.464	.386	.155					
70	.685	.590	.531	.354	.236	.118			
90	.745	.669	.621	.478	.382	.287	.191	.096	
110	.786	.723	.682	.561	.481	.401	.321	.241	.160
130	.815	.760	.726	.622	.553	.484	.415	.346	.277
150	.838	.789	.759	.668	.608	.547	.486	.429	.365

Plain Steel Tank Volumes							
Gallons	Diameter	Length					
15	14"	26″					
30	14"	49"					
40	14"	65″					
60	16"	74"					
80	20"	64"					
100	20"	79″					
120	24"	67"					
135	24"	75″					

Table 3Drawdown FactorsWater Well Storage Tanks									
Cut-out or Final Tank Pressure (PSIG)	Cut-in or Initial Tank Pressure (PSIG)								
(1510)	20	30	40	50					
40	.366	.183							
50	.464	.309	.155						
60	.535	.402	.268	.134					
70	.590	.472	.354	.236					
80	.634	.528	.422	.317					
of water in gallons per	of water in gallons per Lineal Foot								

Volume of water in gallons per Lineal Foot											
Туре	1/2"	3/4"	1″	1 1/4"	1 1/2"	2″	2 1/2"	3″	4'	5	6
Steel Pipe	.016	.028	.045	.078	.105	.172	.250	.385	.667	1.00	1.50
Copper Pipe	.012	.025	.043	.065	.092	.161	.250	.357	.625	1.00	1.40

Typical Installations

Hydronic Systems

Water Heater Systems

Water Well Storage Systems

